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Résumé

Cet article est un examen critique de postulats pour
les mesures d’inconsistance. Il présente des objections
envers deux postulats bien connus. Il contient aussi des
observations plus générales et introduit finalement un
nouvel ensemble de postulats.

Abstract

Postulates for inconsistency measures are examined,
the set of postulates due to Hunter and Konieczny being
the starting point. Objections are raised against a few in-
dividual postulates. More general shortcomings are dis-
cussed and a new series of postulates is introduced.

1 Introduction

In a couple of influential papers [11] [12], Hunter
and Konieczny have introduced postulates for incon-
sistency measures over knowledge bases. Let us first
make it clear that the phrase “inconsistency measure”
refers to the informal meaning of a measure, not to
the usual formal definition whose countable additivity
requirement would actually leave no choice for an in-
consistency measure, making all minimal inconsistent
knowledge bases in each cardinality to count as equally
inconsistent (unless making some consistent formulas
to count as more inconsistent than others !). However,
we stick with the usual range R+ ∪ {∞} (so that the
codomain is totally ordered and 0 is the least element).
Here is the intuition : the higher the amount of incon-
sistency in the knowledge base, the greater the number
returned by the inconsistency measure.

Let us emphasize that we deal with postulates for
inconsistency measures that account for a raw amount
of inconsistency : E.g., it will clearly appear below that
an inconsistency measure I satisfying the (Monotony)
postulate due to Hunter-Konieczny precludes I to be
a ratio (except for quite special cases such as pointed
out in [12]).

Out of the properties listed by [12] [22], we will
ignore both super-additivity :
• if K ∩K ′ = ∅ then I(K ∪K ′) ≥ I(K) + I(K ′)
and MI-separability :
• I(K ∪K ′) = I(K) + I(K ′) if {MI(K),MI(K ′)} is
a partition of MI(K ∪K ′)
(MI(X) is the set of minimal inconsistent subsets of X)
that are significant but over-demanding as postulates
(the latter is based on minimal inconsistent subsets,
an approach which we argue against at length).

2 HK Postulates

Hunter and Konieczny consider a propositional lan-
guage1 L for classical logic `. Finite sequences over
L are called belief bases. KL is comprised of all belief
bases over L, in set-theoretic form (i.e., a member of
KL is an ordinary set2).

According to Hunter and Konieczny, a function I
over belief bases is an inconsistency measure if it satis-
fies the following properties, ∀K,K ′ ∈ KL, ∀α, β ∈ L
- I(K) = 0 iff K 6` ⊥ (Consistency Null)

- I(K ∪K ′) ≥ I(K) (Monotony)

- If α is free3 for K then I(K ∪ {α}) = I(K) (Free
Formula Independence)

- If α ` β and α 6` ⊥ then I(K ∪ {α}) ≥ I(K ∪ {β})
(Dominance)

Letting ≡s denote pointwise equivalence, another pro-
perty from [22] is
- If K ≡s K ′ then I(K) = I(K ′) (Irrelevance of
Syntax)
It implies I({α}) = I({β}) for α ` ⊥ and β ` ⊥, too

1For simplicity, we consider the language generated from the
complete set of connectives {¬,∧,∨}.

2In the conclusion, we mention the case of multisets.
3A formula ϕ is free for X iff Y ∪ {α} ` ⊥ for no consistent

subset Y of X.



restrictive for a postulate. As to its consistent version,
it is dealt with in Section 4 where it is called (Swap).

We argue against (Free Formula Independence) and
(Dominance) in Section 3. We list in Section 4 some
consequences of HK postulates, stressing the need for
more general principles in each case. Section 5 is devo-
ted to a major issue, replacement of equivalent subsets.
Throughout Section 6, we introduce various postulates
supplementing the original ones, ending with a new
axiomatization. Section 7 can be viewed as a kind of
rejoinder backing both (Free Formula Independence)
and (Monotony) through the main new postulate.

3 Objections to HK Postulates

3.1 Objection to (Dominance)

In contrapositive form, (Dominance) says :

For α ` β, if I(K ∪ {α}) < I(K ∪ {β}) then α ` ⊥
(1)

although it makes sense that the left hand side holds
without α ` ⊥. An example is as follows. Let K =
{a∧ b∧ c∧ · · · ∧ z}. Take β = ¬a∨ (¬b∧¬c∧ · · · ∧¬z)
while α = ¬a. We may hold I(K ∪{α}) < I(K ∪{β})
on the following grounds :

- The inconsistency in I(K ∪ {α}) is ¬a vs a.

- The inconsistency in I(K ∪ {β}) is either as above
(i.e., ¬a vs a) or it is ¬b∧¬c∧· · ·∧¬z vs b∧c∧· · ·∧z
that may be viewed as more inconsistent than the
case ¬a vs a, hence, {a∧b∧c∧· · ·∧z}∪{¬a∨(¬b∧¬c∧
· · · ∧ ¬z} can be taken as more inconsistent overall
than {a∧ b∧ c∧ · · ·∧ z}∪{¬a} thereby violating (1)
because α 6` ⊥ here.

3.2 Objection to (Free Formula Independence)

Unfolding the definition of a free formula, (Free For-
mula Independence) is :

If K ′ ∪ {α} ` ⊥ for no consistent subset K ′ of K
then I(K ∪ {α}) = I(K) (2)

The following is a case illustrating why (Free Formula
Independence) is dubious : K = {a∧¬a∧¬b,¬a∧ b∧
¬b}. Take α = a ∧ b. Clearly, a ∧ b is a free formula
of K ∪ {a ∧ b} but its rightmost conjunct causes a
contradiction with a consistent part of a formula of
K and similarly does its leftmost conjunct, hence K ∪
{a ∧ b} can be viewed as more inconsistent than K,
resulting in a violation for (2).

A similar example is given in [12] but ours can be
turned into a case in which no minimal inconsistent
subset is a singleton set (consider K = {a ∧ c, b ∧ ¬c}
and α = ¬a ∨ ¬b).

4 Consequences of HK Postulates

Proposition 1 (Monotony) entails
- if I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) then I(K ∪ {α ∧
β}) ≥ I(K ∪ {β})

Proof Assume I(K ∪ {α ∧ β}) = I(K ∪ {α, β}). Ac-
cording to (Monotony), I(K ∪ {α, β}) ≥ I(K ∪ {β}.
Hence the result.

So, if I conforms with adjunction (roughly speaking,
it means identifying {α, β} with {α ∧ β}) then I res-
pects the idea that adding a conjunct cannot make the
amount of inconsistency to decrease.

Notation. α ≡ β denotes that both α ` β and β ` α
hold. Also, α ≡ β ` γ is an abbreviation for α ≡ β and
β ` γ (so, α ≡ β 6` γ means that α ≡ β and β 6` γ).

Proposition 2 (Free Formula Independence) entails
- if α ≡ > then I(K ∪ {α}) = I(K) (Tautology

Independence)

Proof A tautology is trivially a free formula for any
K.

Unless β 6` ⊥, there is however no guarantee that the
following holds :
- if α ≡ > then I(K ∪ {α ∧ β}) = I(K ∪ {β}) (>-

conjunct Independence)

Proposition 3 (Dominance) entails
- I(K ∪ {α1, . . . , αn}) = I(K ∪ {β1, . . . , βn}) if αi ≡
βi 6` ⊥ for i = 1..n (Swap)

Proof For i = 1..n, αi ≡ βi and (Do-
minance) can be applied in both direc-
tions. I(K ∪ {β1, . . . , βi−1, αi, . . . , αn}) =
I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}) for i = 1..n.

Proposition 3 fails to guarantee that I be independent
of any consistent subset of the knowledge base being
replaced by an equivalent (consistent) set of formulas :
- if K ′ 6` ⊥ and K ′ ≡ K ′′ then I(K∪K ′) = I(K∪K ′′)

(Exchange)
Proposition 3 at least guarantees that any consistent
formula of the knowledge base can be replaced by
an equivalent formula without altering the result of
the inconsistency measure. Of course, postulates for
inconsistency measures are expected not to entail
I(K ∪ {α}) = I(K ∪ {β}) for α ≡ β such that
α ` ⊥. However, some subcases are desirable such as
I(K ∪ {α ∨ α}) = I(K ∪ {α}), I(K ∪ {α ∧ β}) =
I(K ∪ {β ∧ α}), and so on, in full generality (even for
α ` ⊥) but Proposition 3 fails to ensure any of these.



Proposition 4 (Dominance) entails

- if α ∧ β 6` ⊥ then I(K ∪ {α ∧ β}) ≥ I(K ∪ {β})

Proof Applying (Dominance) to the valid entailment
α ∧ β ` β yields the result.

Proposition 4 means that I respects the idea that ad-
ding a conjunct cannot make the amount of inconsis-
tency to decrease, in the case of a consistent conjunc-
tion (however, one really wonders why this not gua-
ranteed to hold in more cases ?).

Proposition 5 Due to (Dominance) and (Monotony)

- For α ∈ K, if α 6` ⊥ and α ` β then I(K ∪ {β}) =
I(K)

Proof I(K ∪ {α}) = I(K) as α ∈ K. By (Domi-
nance), I(K ∪ {α}) ≥ I(K ∪ {β}). Therefore, I(K) ≥
I(K ∪ {β}). The converse holds due to (Monotony).

Proposition 5 guarantees that a consequence of a
consistent formula of the knowledge base can be ad-
ded without altering the result of the inconsistency
measure. What about a consequence of a consistent
subset of the knowledge base ? Indeed, Proposition 5
is a special case of

(An) For {α1, . . . , αn} ⊆ K, if {α1, . . . , αn} 6` ⊥ and
{α1, . . . , αn} ` β then I(K ∪ {β}) = I(K)

That is, Proposition 5 guarantees (An) only for n = 1
but what is the rationale for stopping there ?

Example 1 Let K = {¬b, a ∧ b, b ∧ c}. Proposition 5
ensures that I(K∪{a, c}) = I(K∪{a}) = I(K∪{c}) =
I(K). Although a∧c behaves as a and c with respect to
all contradictions in K (i.e., a∧b vs ¬b and b∧c vs ¬b),
HK postulates fail to ensure I(K ∪ {a ∧ c}) = I(K),
no matter how natural the equality is.

5 Two Postulates for Replacement of
Equivalent Subsets

5.1 Replacing consistent equivalent subsets : The
value of (Exchange)

To start with, (Exchange) is not a consequence of
(Dominance) and (Monotony). An example is K1 =
{a∧ c∧e, b∧d∧¬e} and K2 = {a∧e, c∧e, b∧d∧¬e}.
By (Exchange), I(K1) = I(K2) but HK postulates do
not impose the equality. Next are a few results showing
properties of (Exchange).

Proposition 6 The following items are pairwise equi-
valent :

- (Exchange)

- The family (An)n≥1

- If K ′ 6` ⊥ and K ′ ≡ K ′′ then I(K ∪K ′) = I((K \
K ′) ∪K ′′)

- If K ′ 6` ⊥ and K ∩ K ′ = ∅ and K ′ ≡ K ′′ then
I(K ∪K ′) = I(K ∪K ′′)

- If {K1, . . . ,Kn} is a partition of K \K0 where K0 =
{α ∈ K | α ` ⊥} such that Ki 6` ⊥ and K ′i ≡ Ki for
i = 1..n then I(K) = I(K0 ∪K ′1 ∪ · · · ∪K ′n)

Proof Assume (An) for all n ≥ 1 and K ′ ≡ K ′′ 6` ⊥.
(i) Let K ′ = {α1, . . . , αm}. Define 〈K ′j〉j≥0 where
K ′0 = K ∪ K ′′ and K ′j+1 = K ′j ∪ {αj+1}. It is
clear that K ′′ 6` ⊥ and K ′′ ` αj+1 and K ′′ ⊆ K ′j .
Hence, (An) can be applied to K ′j and this gives
I(K ′j) = I(K ′j ∪{αj+1}) = I(K ′j+1). Overall, I(K ′0) =
I(K ′m). I.e., I(K ∪ K ′′) = I(K ∪ K ′ ∪ K ′′). (ii) Let
K ′′ = {β1, . . . , βp}. Consider the sequence 〈K ′′j 〉j≥0

where K ′′0 = K ∪ K ′ and K ′′j+1 = K ′′j ∪ {βj+1}.
Clearly, K ′ 6` ⊥ and K ′ ` βj+1 and K ′ ⊆ K ′′j . Hence,
(An) can be applied to K ′′j and this gives I(K ′′j ) =
I(K ′′j ∪ {βj+1}) = I(K ′′j+1). Overall, I(K ′′0 ) = I(K ′′p ).
I.e., I(K ∪ K ′) = I(K ∪ K ′ ∪ K ′′). Combining the
equalities, I(K∪K ′) = I(K∪K ′′). That is, the family
(An)n≥1 entails (Exchange).
We now show that the family (An)n≥1 is entailed by
the third item in the statement of Proposition 6, de-
noted (Exchange′), which is :

If K ′ 6` ⊥ and K ′ ≡ K ′′ then
I(K ∪K ′) = I((K \K ′) ∪K ′′).

Let {α1, . . . , αn} ⊆ K such that {α1, . . . , αn} 6` ⊥ and
{α1, . . . , αn} ` β. So, {α1, . . . , αn} ≡ {α1, . . . , αn, β}.
For K ′ = {α1, . . . , αn}, K ′′ = {α1, . . . , αn, β}
(Exchange) gives I(K) = I((K \ {α1, . . . , αn}) ∪
{α1, . . . , αn, β} = I(K ∪ {β}).
By transitivity, we have thus shown that (Exchange) is
entailed by (Exchange′). Since the converse is obvious,
the equivalence between (Exchange), (Exchange′) and
the family (An)n≥1 holds.

It is clear that the fourth item in the statement of
Proposition 6 is equivalent with (Exchange).

Consider now (Exchange′′), the last item in the sta-
tement of Proposition 6 :

If {K1, . . . ,Kn} is a partition of K \K0 such that
K0 = {α ∈ K | α ` ⊥} and K ′i ≡ Ki 6` ⊥ for i = 1..n

then I(K) = I(K0 ∪K ′1 ∪ · · · ∪K ′n).

(i) Assume (Exchange′). We now prove (Exchange′′).
Let {K1, . . . ,Kn} be a partition of K \ K0 satis-
fying the conditions of (Exchange′′). Trivially, I(K) =
I(K0 ∪ K \ K0) = I(K0 ∪ K1 ∪ · · · ∪ Kn). Then,
Ki \Kn = Ki for i = 1..n − 1. Applying (Exchange′)
yields I(K0 ∪K1 ∪ · · · ∪Kn) = I(K0 ∪K1 ∪ · · · ∪K ′n)



hence I(K) = I(K0 ∪ K1 ∪ · · · ∪ K ′n). Applying
(Exchange′) iteratively upon Kn−1, Kn−2, . . ., K1

gives I(K) = I(K0 ∪K ′1 ∪ · · · ∪K ′n).
(ii) Assume (Exchange′′). We now prove (Exchange′).
Let K ′ 6` ⊥ and K ′′ ≡ K ′. Clearly, (K ∪ K ′)0 = K0

and (K ∪ K ′) \ (K ∪ K ′)0 = (K \ K0) ∪ K ′. As
each formula in K \ K0 is consistent, K \ K0 can be
partitioned into {K1, . . . ,Kn} such that Ki 6` ⊥ for
i = 1..n (take n = 0 in the case that K = K0).
Then, {K1 \ K ′, . . . ,Kn \ K ′,K ′} is a partition of
(K\K0)∪K ′ satisfying the conditions in (Exchange′′).
Now, I(K∪K ′) = I(K0∪(K1\K ′)∪· · ·∪(Kn\K ′)∪K ′).
Applying (Exchange′′) with each Ki substituting it-
self and K ′′ substituting K ′, we obtain I(K ∪K ′) =
I(K0 ∪ (K1 \ K ′) ∪ · · · ∪ (Kn \ K ′) ∪ K ′′). That is,
I(K ∪K ′) = I((K \K ′) ∪K ′′).

Proposition 7 (Exchange) entails (Swap).

Proof Taking advantage of transitivity
of equality, it will be sufficient to prove
I(K ∪ {β1, . . . , βi−1, αi, . . . , αn}) = I(K ∪
{β1, . . . , βi, αi+1, . . . , αn}) for i = 1..n. Due to
αi ≡ βi and βi 6` ⊥, it is the case that {αi} 6` ⊥
and {αi} ≡ {αi, βi}. So, (Exchange) can be
applied to K ∪ {β1, . . . , βi−1, αi+1, . . . , αn} for
K ′ = {αi} and K ′′ = {αi, βi}. As a consequence,
I(K ∪ {β1, . . . , βi−1, αi, . . . , αn}) is then equal to
I(((K∪{β1, . . . , βi−1, αi+1, . . . , αn})\{αi})∪{αi, βi})
and the latter is I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}).

That (Exchange) entails (Swap) is natural. More sur-
prisingly, (Exchange) also entails (Tautology Indepen-
dence) as the next result shows.

Proposition 8 (Exchange) entails (Tautology Inde-
pendence).

Proof The non-trivial case is α 6∈ K. Apply
(Exchange′) for K ′ = {α} and K ′′ = ∅ so that
I(K∪{α}) = I((K\{α})∪∅) ensues. I.e., I(K∪{α}) =
I(K).

5.2 The value of an adjunction postulate

In keeping with the meaning of the conjunction
connective in classical logic, consider a dedicated pos-
tulate in the form

- I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) (Adjunction
Invariancy)

Proposition 9 (Adjunction Invariancy) entails

- I(K ∪ {α, β}) = I((K \ {α, β}) ∪ {α ∧ β}) (Disjoint
Adjunction Invariancy)

- I(K) = I({
∧
K}) (Full Adjunction Invariancy)

where
∧
K denotes α1∧. . .∧αn for any enumeration

α1, . . . , αn of K.

Proof Let K = {α1, . . . , αn}. Apply itera-
tively (Adjunction Invariancy) as I({α1 ∧ . . . ∧
αi−1, αi, . . . , αn}) = I({α1 ∧ . . . ∧ αi, αi+1, . . . , αn})
for i = 2..n.

Proposition 10 Assuming I({α∧(β∧γ)}) = I({(α∧
β)∧γ}) and I({α∧β}) = I({β∧α}), (Disjoint Adjunc-
tion Invariancy) and (Full Adjunction Invariancy) are
equivalent.

Proof Assume (Full Adjunction Invariancy). K ∪
{α, β} = (K \ {α, β}) ∪ {α, β} yields I(K ∪
{α, β}) = I((K \ {α, β}) ∪ {α, β}). By (Full Ad-
junction Invariancy), I((K \ {α, β}) ∪ {α, β}) =
I({

∧
((K \ {α, β}) ∪ {α, β})}) and the latter can

be written I({γ1 ∧ . . . ∧ γn ∧ α ∧ β}) for some
enumeration γ1, . . . , γn of K \ {α, β}. I.e., I(K ∪
{α, β}) = I({γ1 ∧ . . . ∧ γn ∧ α ∧ β}). By (Full Ad-
junction Invariancy), I((K \ {α, β}) ∪ {α ∧ β}) =
I({

∧
((K \ {α, β}) ∪ {α ∧ β})}) that can be written

I({γ1 ∧ . . . ∧ γn ∧ α ∧ β}) for the same enumera-
tion γ1, . . . , γn of K \ {α, β}. So, I(K ∪ {α, β}) =
I((K \ {α, β}) ∪ {α ∧ β}). As to the converse, it is
trivial to use (Disjoint Adjunction Invariancy) iterati-
vely to get (Full Adjunction Invariancy).

A counter-example to the purported equivalence of
(Adjunction Invariancy) and (Full Adjunction Inva-
riancy) is as follows. Let K = {a, b,¬b ∧ ¬a}. Ob-
viously, I(K ∪ {a, b}) = I(K) since {a, b} ⊆ K. (Full
Adjunction Invariancy) gives I(K) = I({

∧
γ∈K γ}) i.e.

I(K ∪ {a, b}) = I({
∧
γ∈K γ}) = I({a ∧ b ∧ ¬b ∧ ¬a}).

A different case of applying (Full Adjunction Inva-
riancy) gives I(K ∪ {a ∧ b}) = I({

∧
γ∈K∪{a∧b} γ}) =

I({a ∧ b ∧ ¬b ∧ ¬a ∧ a ∧ b}). However, HK postulates
do not provide grounds to infer I({a∧ b∧¬b∧¬a}) =
I({a∧b∧¬b∧¬a∧a∧b}) hence (Adjunction Invariancy)
may fail here.

(Adjunction Invariancy) offers a natural equivalence
between (Monotony) and the principle which expresses
that adding a conjunct cannot make the amount of
inconsistency to decrease :

Proposition 11 Assuming (Consistency Null), (Ad-
junction Invariancy) implies that (Monotony) is equi-
valent with

- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α}) (Conjunction
Dominance)

Proof Assume (Monotony), an instance of which is
I(K∪{α}) ≤ I(K∪{α, β}). According to (Adjunction



Invariancy), I(K ∪ {α, β}) = I(K ∪ {α ∧ β}). Hence,
I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}). That is, (Conjunction
Dominance) holds.
Assume (Conjunction Dominance). First, consider
K 6= ∅. Let α ∈ K. Due to (Conjunction Domi-
nance), I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}. (Adjunction In-
variancy) gives I(K∪{α, β}) = I(K∪{α∧β}). Hence,
I(K ∪ {α}) ≤ I(K ∪ {α, β}). I.e., I(K) ≤ I(K ∪ {β})
since α ∈ K. For K ′ ∈ KL, it is enough to iterate this
finitely many times (one for every β in K ′\K) in order
to obtain I(K) ≤ I(K∪K ′). Now, consider K = ∅. By
(Consistency Null), I(K) = 0 hence I(K) ≤ I(K∪K ′).

(Free Formula Independence) yields (Tautology Inde-
pendence) by Proposition 2 although a more general
principle (e.g., (>-conjunct Independence) or the like)
ensuring that I be independent of tautologies is to be
expected. The next result shows that (Adjunction In-
variancy) is the way to get both postulates at once.

Proposition 12 Assuming (Consistency Null), (Ad-
junction Invariancy) implies that (Tautology Indepen-
dence) and (>-conjunct Independence) are equivalent.

Proof For α ≡ >, (Adjunction Invariancy) and (Tau-
tology Independence) give I(K ∪ {α ∧ β}) = I(K ∪
{α, β}) = I(K ∪ {β}). As to the converse, let β ∈ K.
Therefore, I(K) = I(K ∪ {β}) = I(K ∪ {α ∧ β}) =
I(K∪{α, β}) = I(K∪{α}). The case K = ∅ is settled
by means of (Consistency Null).

Lastly, (Adjunction Invariancy) provides for free va-
rious principles related to (idempotence, commutati-
vity, and associativity of) conjunction, as follows.

Proposition 13 (Adjunction Invariancy) entails

- I(K ∪ {α ∧ α}) = I(K ∪ {α})
- I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α})
- I(K ∪ {α ∧ (β ∧ γ)}) = I(K ∪ {(α ∧ β) ∧ γ})

Proof (i) I(K ∪ {α ∧ α}) = I(K ∪ {α, α}) = I(K ∪
{α}). (ii) I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) = I(K ∪
{β, α}) = I(K ∪ {β ∧α}). (iii) I(K ∪ {α∧ (β ∧ γ)}) =
I(K ∪ {α, β ∧ γ}) = I(K ∪ {α, β, γ}) = I(K ∪ {α ∧
β, γ}) = I(K ∪ {(α ∧ β) ∧ γ}).

(Adjunction Invariancy) and (Exchange) are two prin-
ciples devoted to ensuring that replacing a subset of
the knowledge base with an equivalent subset does not
change the value given by the inconsistency measure.
The contexts that these two principles require for the
replacement to be safe differ :

1. ForK ′ 6` ⊥, (Exchange) is more general than (Ad-
junction Invariancy) since (Exchange) guarantees
I(K ∪ K ′) = I(K ∪ K ′′) for every K ′′ ≡ K ′

but (Adjunction Invariancy) ensures it only for
K ′′ = {

∧
K ′i | K = {K ′1, ..,K ′n}} where K ranges

over the partitions of K ′.

2. For α ` ⊥, (Adjunction Invariancy) is more ge-
neral than (Exchange) because (Adjunction Inva-
riancy) guarantees I(K∪{α, β}) = I(K∪{α∧β})
but (Exchange) does not guarantee it.

6 Revisiting HK Postulates

6.1 Sticking with (Consistency Null) and (Mono-
tony)

(Consistency Null) or a like postulate is indispen-
sable because there seems to be no way to have a sen-
sible inconsistency measure that would not be able to
always discriminate between consistency and inconsis-
tency.

(Monotony) is to be kept since contradictions in
classical logic (and basically all logics) are monotone
[1] wrt information : i.e., extra information cannot
make a contradiction to vanish.

However, we will not retain (Monotony) as an expli-
cit postulate, because it ensues from the postulate to
be introduced in Section 6.4.

6.2 Intended postulates

In addition, both (Tautology Independence) and (>-
conjunct Independence) are due postulates. Even more
generally, it would make no sense, when considering
how inconsistent a theory is, to take into account any
inessential difference in which a formula is written (for
example, α∨β instead of β∨α). Define α′ to be a pre-
normal form of α if α′ results from α by applying (pos-
sibly repeatedly) one or more of these principles : com-
mutativity, associativity and distribution for ∧ and ∨,
De Morgan laws, double negation equivalence. Hence
the next4 postulate :

- If β is a prenormal form of α then I(K ∪ {α}) =
I(K ∪ {β}) (Rewriting)

As (Monotony) essentially means that extra informa-
tion cannot make amount of inconsistency to decrease,
the same idea must apply to conjunction because α∧β
does involve more information than α. Thus, another
due postulate is :

4In sharp contrast to (Irrelevance of Syntax) that allows for
destructive transformation from α to β when both are incon-
sistent, (Rewriting) takes care of inhibiting purely deductive
transformations (the most important one is presumably from
α ∧ ⊥ to ⊥).



- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α}) (Conjunction
Dominance)

Indeed, it does not matter whether α or β or both be
inconsistent : It definitely cannot be rational to hold
that there is a case (even a single one) where exten-
ding K with a conjunction would result in less incon-
sistency than extending K with one of the conjuncts.

6.3 Taking care of disjunction

It is a delicate matter to assess how inconsistent
a disjunction is, but bounds can be set. Indeed, a dis-
junction expresses two alternative possibilities, so that
accrual across these would make little sense. That is,
amount of inconsistency in α∨β cannot exceed amount
of inconsistency in either α or β, depending on which
one involves a higher amount of inconsistency. Hence
the next postulate.
- I(K∪{α∨β}) ≤ max(I(K∪{α}), I(K∪{β})) (Dis-

junct Maximality)

Proposition 14 Assuming I(K ∪ {α ∨ β}) = I(K ∪
{β ∨ α}), it is the case that (Disjunct Maximality) is
equivalent with each of
- if I(K ∪ {α}) ≥ I(K ∪ {β}) then I(K ∪ {α}) ≥
I(K ∪ {α ∨ β})

- I(K ∪ {α ∨ β}) ≤ I(K ∪ {α}) or I(K ∪ {α ∨ β}) ≤
I(K ∪ {β})

Proof Let us prove that (Disjunct Maximality) en-
tails the first item. Assume I(K ∪ {α}) ≥ I(K ∪ {β}).
I.e., I(K∪{α}) = max(I(K∪{α}), I(K∪{β})). Using
(Disjunct Maximality), I(K ∪ {α ∨ β}) ≤ max(I(K ∪
{α}), I(K∪{β})), i.e. I(K∪{α})) ≥ I(K∪{α∨β}). As
to the converse direction, assume that if I(K ∪{α}) ≥
I(K∪{β}) then I(K∪{α}) ≥ I(K∪{α∨β}). Consider
the case max(I(K ∪ {α}), I(K ∪ {β})) = I(K ∪ {α}).
Hence, I(K ∪{α}) ≥ I(K ∪{β}). According to the as-
sumption, it follows that I(K∪{α}) ≥ I(K∪{α∨β}).
That is, max(I(K∪{α}), I(K∪{β})) ≥ I(K∪{α∨β}).
Similarly, the case max(I(K ∪ {α}), I(K ∪ {β})) =
I(K ∪ {β}) gives I(K ∪ {β}) ≥ I(K ∪ {β ∨α}). Then,
I(K ∪ {β}) ≥ I(K ∪ {α ∨ β}) in view of the hypo-
thesis in the statement of Proposition 14. That is,
max(I(K ∪{α}), I(K ∪{β})) ≥ I(K ∪{α∨β}). Com-
bining both cases, (Disjunct Maximality) holds.
The equivalence of (Disjunct Maximality) with the last
item is due to the fact that the codomain of I is totally
ordered.

Although it is quite unclear how to weigh inconsisten-
cies out of a disjunction, they must weigh somewhat
less than out of both disjuncts (whether tied together
by a conjunction or not), which is the reason for hol-
ding

- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α ∨ β}) (∧-over-∨
Dominance)

and its conjunction-free counterpart
- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})

Proposition 15 Assuming I(K ∪ {α ∧ β}) = I(K ∪
{β ∧ α}), (Conjunction Dominance) and (Disjunct
Maximality) entail (∧-over-∨ Dominance).

Proof Given I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α}),
(Conjunction Dominance) gives I(K ∪ {α ∧ β}) ≥
I(K ∪ {α}) and I(K ∪ {α∧ β}) ≥ I(K ∪ {β}). There-
fore, max(I(K ∪ {α}), I(K ∪ {β})) ≤ I(K ∪ {α ∧ β}).
In view of (Disjunct Maximality), I(K ∪ {α ∨ β}) ≤
max(I(K ∪ {α}), I(K ∪ {β})), and it accordingly fol-
lows that I(K ∪ {α ∨ β}) ≤ I(K ∪ {α ∧ β}) holds.

Proposition 16 (Monotony) and (Disjunct Maxima-
lity) entail
- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})

Proof I(K∪{α}) ≤ I(K∪{α, β}) and I(K∪{β}) ≤
I(K∪{α, β}) according to (Monotony). Consequently,
max(I(K ∪{α}), I(K ∪{β})) ≤ I(K ∪{α, β}). Due to
(Disjunct Maximality), I(K ∪ {α ∨ β}) ≤ max(I(K ∪
{α}), I(K ∪ {β})). Therefore, I(K ∪ {α, β}) ≥ I(K ∪
{α ∨ β}).

For the record, another plausible postulate related
to disjunction is
- I(K ∪{α∨β}) ≥ min(I(K ∪{α}), I(K ∪{β})) (Dis-

junct Minimality)
Similarly to Proposition 14, the following ensues :

Proposition 17 Assuming I(K ∪ {α ∨ β}) = I(K ∪
{β∨α}), (Disjunct Minimality) is equivalent to each of
- if I(K ∪ {β}) ≥ I(K ∪ {α}) then I(K ∪ {α ∨ β}) ≥
I(K ∪ {α})

- I(K ∪ {α ∨ β}) ≥ I(K ∪ {α}) or I(K ∪ {α ∨ β}) ≥
I(K ∪ {β})

6.4 A schematic postulate

The next postulate is to be presented in two steps.

1. (Monotony) expresses that adding information
cannot result in a decrease of the amount of incon-
sistency in the knowledge base. Considering a no-
tion of primitive conflicts that underlies amount
of inconsistency, (Monotony) is a special case of
a postulate stating that amount of inconsistency
is monotone with respect to the set of primi-
tive conflicts C(K) of the knowledge base K : If
C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).



Clearly, I is to admit different postulates depen-
ding on what features are required for primitive
conflicts (see Table 1).

2. Keep in mind that an inconsistency measure re-
fers to logical content of the knowledge base, not
other aspects whether subject matter of contra-
diction, source of information,. . . This is because
an inconsistency measure is only concerned with
quantity, i.e. amount of inconsistency (of course,
it is possible for example that a contradiction be
more worrying than another -and so, making more
pressing to act [4] about it- but this has nothing
to do with amount of inconsistency). Now, what
characterizes logical content is uniform substituti-
vity. Hence a postulate called (Substitutivity Do-
minance) stating that renaming cannot make the
amount of inconsistency to decrease : If σK = K ′

for some substitution σ then I(K) ≤ I(K ′).

Combining these two ideas, we obtain the following
postulate
- If C(σK) ⊆ C(K ′) for some substitution σ then
I(K) ≤ I(K ′)

(Subsumption Orientation)

Fact 1 Every postulate of the form
- I(X) ≤ I(Y ) for all X ∈ KL and Y ∈ KL such that

condition CX,Y holds
or of the form
- I(X) = I(Y ) for all X ∈ KL and Y ∈ KL such that

condition CX,Y holds
is derived from (Subsumption Orientation) and from
any property of C ensuring that condition C holds.

Individual properties of C ensuring condition C for
a number of postulates, including all those previously
mentioned in the paper, can be found in Table 1.
Please notice that the fact that (Instance Low) and
(Monotony) share the same requirement over C does
not mean that the postulate (Monotony) entails the
postulate (Instance Low).

Proposition 18 Assuming C(K) ⊆ C(K ∪K ′) for all
K ∈ KL and K ′ ∈ KL, (Subsumption Orientation)
yields the following derived postulate :
- If σK ⊆ K ′ for some substitution σ then I(K) ≤
I(K ′) (Instance Low)

Proof Given the property C(X) ⊆ C(X ∪ Y ) for all
X ∈ KL and for all Y ∈ KL, we must prove that
I(K) ≤ I(K ′) holds whenever there exists some sub-
stitution σ such that σK ⊆ K ′. Assume σK ⊆ K ′.
Using the property just mentioned, C(σK) ≤ C(K ′)
ensues (since K ′ \ σK = {α1, . . . , αn} is finite due
to K ′ ∈ KL). Applying (Subsumption Orientation),
I(K) ≤ I(K ′).

Proposition 18 is merely a special case of Fact 1 but it
is stated explicitly because (Monotony) is entailed by
(Instance Low).

6.5 A new system of postulates (basic version
and strong version)

All the above actually suggests a new system of pos-
tulates, which consists simply of (Consistency Null)
and (Subsumption Orientation). The system is para-
meterized by the properties imposed upon C in the
latter. In the range thus induced by C, a basic system
emerges, which amounts to the list in Table 2. At the
other end of the range is the strong system in Table 3.
Except for (Dominance) and (Free Formula Indepen-
dence), it captures all the postulates listed in Table 1.
It is trivial to check that both systems are coherent.

7 HK Postulates identified as (Subsump-
tion Orientation)

Time has come to make sense5 of the HK choice
of (Free Formula Independence) together with (Mono-
tony), by means of Theorem 1 and Theorem 2.

Theorem 1 Let C be such that for every K ∈ KL
and for every X ⊆ L which is minimal inconsistent,
X ∈ C(K) iff X ⊆ K. If I satisfies both (Mono-
tony) and (Free Formula Independence) then I satis-
fies (Subsumption Orientation) restricted to its non-
substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).

Proof Let C(K) ⊆ C(K ′). Should K be a subset of
K ′, (Monotony) yields I(K) ≤ I(K ′) as desired. So, let
us turn to K 6⊆ K ′. Consider ϕ ∈ K \K ′. If ϕ were not
free for K, there would exist a minimal inconsistent
subset X of K such that ϕ ∈ X. Clearly, X 6⊆ K ′. The
constraint imposed on C in the statement of the theo-
rem would then yield both X ∈ C(K) and X 6∈ C(K ′),
contradicting the assumption C(K) ⊆ C(K ′). Hence,
ϕ is free for K. In view of (Free Formula Indepen-
dence), I(K) = I(K \ {ϕ}). The same reasoning ap-
plied to all the (finitely many) formulas in K \K ′ gives
I(K) = I(K ∩K ′). However, K ∩K ′ is a subset of K ′

so that using (Monotony) yields I(K ∩ K ′) ≤ I(K ′)
hence I(K) ≤ I(K ′).

Define Ξ = {X ∈ KL | ∀X ′ ⊆ X,X ′ ` ⊥ ⇔ X =
X ′}. Then, C is said to be governed by minimal incon-
sistency iff C satisfies the following property

if C(K) ∩ Ξ ⊆ C(K ′) ∩ Ξ then C(K) ⊆ C(K ′).
5Although still not defending the choice of (Free Formula

Independence).



Specific property for C Specific postulate entailed by
(Subsumption Orientation)

No property needed (Variant Equality)
No property needed (Substitutivity Dominance)
C(K ∪ {α}) = C(K) for α ≡ > (Tautology Independence)
C(K ∪ {α ∧ β}) = C(K ∪ {β}) for α ≡ > (>-conjunct Independence)
C(K ∪ {α}) = C(K ∪ {α′}) for α′ prenormal form of α (Rewriting)
C(K) ⊆ C(K ∪ {α}) (Instance Low)
C(K) ⊆ C(K ∪ {α}) (Monotony)
C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α ∧ β}) (∧-over-∨ Dominance)
C(K ∪ {α}) ⊆ C(K ∪ {α ∧ β}) (Conjunction Dominance)
C(K ∪ {α, β}) = C(K ∪ {α ∧ β}) (Adjunction Invariancy)
C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Maximality)
C(K ∪ {α ∨ β}) ⊇ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Minimality)
C(K ∪K ′) = C(K ∪K ′′) for K ′′ ≡ K ′ 6` ⊥ (Exchange)
C(K ∪ {α1, ..., αn}) = C(K ∪ {β1, .., βn}) if αi ≡ βi 6` ⊥ (Swap)
C(K ∪ {β}) ⊆ C(K ∪ {α}) for α ` β and α 6` ⊥ (Dominance)
C(K ∪ {α}) = C(K) for α free for K (Free Formula Independence)

Tab. 1 – Conditions for postulates derived from (Subsumption Orientation).

(Variant Equality) is named after the notion of a variant [2] :

- if σK = K ′ and σ′K ′ = K for some substitutions σ and σ′ then I(K) = I(K ′) (Variant Equality)

Basic System

I(K) = 0 iff K 6` ⊥ (Consistency Null)
If α′ is a prenormal form of α then I(K ∪ {α}) = I(K ∪ {α′}) (Rewriting)
If σK ⊆ K ′ for some substitution σ then I(K) ≤ I(K ′) (Instance Low)
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})) (Disjunct Maximality)
If α ≡ > then I(K) = I(K ∪ {α}) (Tautology Independence)
If α ≡ > then I(K ∪ {α ∧ β}) = I(K ∪ {β}) (>-conjunct Independence)
I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}) (Conjunction Dominance)

Tab. 2 – Basic system

Strong System

I(K) = 0 iff K 6` ⊥ (Consistency Null)
If α′ is a prenormal form of α then I(K ∪ {α}) = I(K ∪ {α′}) (Rewriting)
If σK ⊆ K ′ for some substitution σ then I(K) ≤ I(K ′) (Instance Low)
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})) (Disjunct Maximality)
I(K ∪ {α ∨ β}) ≥ min(I(K ∪ {α}), I(K ∪ {β})) (Disjunct Minimality)
If K ′′ ≡ K ′ 6` ⊥ then I(K) = I(K ∪K ′′) (Exchange)
I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) (Adjunction Invariancy)

Tab. 3 – Strong system



Please note that C being governed by minimal incon-
sistency does not mean that C(K) is determined by the
set of minimal inconsistent subsets of K. Intuitively, it
only means that those Z in C(K) which are not mini-
mal inconsistent cannot override set-inclusion induced
by minimal inconsistent subsets —i.e., no such Z can,
individually or collectively, turn C(K)∩Ξ ⊆ C(K ′)∩Ξ
into C(K) 6⊆ C(K ′).

Theorem 2 Let C be governed by minimal inconsis-
tency and be such that for all K ∈ KL and all X ⊆ L
which is minimal inconsistent, X ∈ C(K) iff X ⊆ K.
I satisfies (Monotony) and (Free Formula Indepen-
dence) whenever I satisfies (Subsumption Orientation)
restricted to its non-substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).

Proof Trivially, if X ⊆ K then X ⊆ K ∪ {α}.
By the constraint imposed on C in the statement
of the theorem, it follows that if X ∈ C(K) then
X ∈ C(K∪{α}). Since C is governed by minimal incon-
sistency, C(K) ⊆ C(K ∪ {α}) ensues and (Subsump-
tion Orientation) yields (Monotony). Let α be a free
formula for K. By definition, α is in no minimal incon-
sistent subset of K ∪{α}. So, X ⊆ K iff X ⊆ K ∪{α}
for all minimal inconsistent X. By the constraint im-
posed on C in the statement of the theorem, X ∈ C(K)
iff X ∈ C(K ∪{α}) ensues for all minimal inconsistent
X. In symbols, C(K) ∩ Ξ = C(K ∪ {α}) ∩ Ξ. Since C
is governed by minimal inconsistency, it follows that
C(K) = C(K ∪ {α}). Thus, (Free Formula Indepen-
dence) holds, due to (Subsumption Orientation).

Therefore, Theorem 1 and Theorem 2 mean that,
if substitutivity is left aside, (Subsumption Orienta-
tion) is equivalent with (Free Formula Independence)
and (Monotony) when primitive conflicts are essen-
tially minimal inconsistent subsets. So, these postu-
lates form a natural pair if it is assumed that mini-
mal inconsistent subsets must be the basis for incon-
sistency measuring.

8 Conclusion

We have proposed a new system of postulates for
inconsistency measures, i.e.

- I(K) = 0 iff K is consistent (Consistency Null)

- If C(σK) ⊆ C(K ′) for some substitution σ then
I(K) ≤ I(K ′)

(Subsumption Orientation)

parameterized by the requirements imposed on C.
Even in its strong version, the new system omits

both (Dominance) and (Free Formula Independence),

which we have argued against. We have investigated
various postulates, absent from the HK set, giving
grounds to include them in the new system. Lastly,
we have shown that (Subsumption Orientation) not
only accounts for the other postulates but also pro-
vides a justification for (Free Formula Independence)
together with (Monotony), through focussing on mini-
mal inconsistent subsets.

We do not hold that the new system, in basic or
strong version, captures all desirable cases, we more
modestly claim for improving over the original HK set.
In particular, we believe that the HK postulates suffer
from over-commitment to minimal inconsistent sub-
sets. Crucially, such a comment applies to postulates
(because they would exclude all approaches that are
not based upon minimal inconsistent subsets) but it
does not apply to measures themselves : There are ex-
cellent reasons to develop a specific measure [13] [15]
[19] . . . based on minimal inconsistent sets (in contrast,
a set of postulates must take care of generality).

As to future work, we must mention taking seriously
belief bases as multisets. Perhaps the most insightful
postulate in this respect is (Adjunction Invariancy)
since there surely is some rationality in holding that
{a∧ b∧¬a∧¬b∧ a∧ b∧¬a∧¬b} is more inconsistent
than {a ∧ b ∧ ¬a ∧ ¬b}.
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suring Inconsistency through Minimal Incon-
sistent Sets. Proc. of the 11th Conference on Prin-
ciples of Knowledge Representation and Reaso-
ning (KR’08), Sydney, Australia, September 16-
19, G. Brewka and J. Lang (eds.), pp. 358-366.
AAAI Press, 2008.

[12] Anthony Hunter and Sébastien Konieczny. On the
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